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Abstract 

The dynamical problem of multiwave electron dif- 
fraction in perfect and imperfect crystals is treated 
on the basis of the Bloch wave formalism. In the case 
of a perfect crystal the classification of the electron 
Bloch states in terms of the transverse energy is 
introduced. A perturbation theory for the analytical 
construction of electron Bloch functions is suggested, 
using the symmetry of the dynamical matrix. The 
contribution of bound, valence and free Bloch states 
to the reflections and to high-resolution electron- 
microscopy (HREM) images are analysed. Using the 
column approximation, the equations describing the 
propagation and the excitation of the electron Bloch 
waves due to defects in a crystal lattice are derived 
from the Schr6dinger equation. A solution of these 
equations is obtained in the first Born approxi- 
mation. The theoretical foundation of the Cowley- 
Moodie multislice method for computer simulations 
of HREM images is presented. As an illustration of 
the Cowley-Moodie method, HREM images of Au 
in the (110) orientation and Y3A15OI2 (111) are 
calculated for different defocusing parameters Af In 
the case of Au the fine structure of Au lattice images, 
when the Au atom strings are surrounded by 'halos', 
is clearly revealed for certain values of d f  The Y-A1 
garnet images are shown to have either a sixfold or a 
threefold axis of symmetry, depending whether or 
not the dimensionless thickness in terms of the lattice 
spacing along (111) is an integer number. 

method and derive a set of coupled first-order differ- 
ential equations linking the diffracted-wave ampli- 
tudes in imperfect crystals. The third approach, 
which opened the way to computer simulations of 
high-resolution electron-microscopy (HREM) lattice 
images, was suggested by Cowley & Moodie (1959). 
It is based on a quasi-classical (electron-optical) 
approximation of quantum-mechanical theory. 

The present paper deals with the general problem 
of dynamical electron diffraction based on the Bloch 
wave method. Special attention is paid to the elec- 
tron energy classification of the transverse motion 
states (§2) and to the role of symmetry properties of 
the Bloch waves from the point of view of group 
theory (§3). In §4 the perturbation theory for the 
construction of many-beam Bloch wave functions is 
developed and in §5 the practical possibilities of the 
theory are discussed and illustrated by some 
examples. In §6 the problem of the Bloch wave 
scattering in a crystal with an arbitrary point defect 
is treated. In the framework of the column approxi- 
mation the solution of the dynamical equations 
describing the Bloch wave excitation is obtained 
using first-order perturbation theory. In §7 the 
Cowley-Moodie multislice method for computer 
simulations of HREM images is briefly discussed and 
the results of numerical calculations for an Au lattice 
in the (110) orientation and a YaA15012 lattice (111) 
are presented and a qualitative analysis of the 
HREM image contrast variation is presented. 

I. Introduction 

Amongst the numerous formulations of multiwave 
dynamical theory for fast electron diffraction three 
approaches are most widely known. Bethe (1928) 
elaborated the original approach based on the physi- 
cal concept of Bloch waves propagating inside a 
crystalline medium. Another method similar to Dar- 
win's for the treatment of reflection of X-rays from 
planes perpendicular to the crystal surface is 
developed by Howie & Whelan (1961). They give a 
mathematically rigorous justification of Darwin's 
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2. Transverse-energy classification of the electron 
Bloch states 

In the general case the wave function 0(r) describing 
the propagation of an electron inside a medium 
obeys the relativistic Dirac equation. For non- 
magnetic crystals and fast electrons when the 
electron potential energy U(r) is small in comparison 
with its total energy e = E + mc 2, the Dirac equa- 
tion can be transformed to the non-relativistic 
Schr6dinger equation: 

A@(r) + 4~-2[K~ + V(r)]@(r) = 0, (1) 
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where K~ = 2mh-2E(1 + E/2mc2), V(r) = 
-2mh-2U(r) (1 + E/mc2). Here, E, m are the kinetic 
energy and the rest mass of the electron, respectively, 
c is velocity of light, and h is Planck's constant. 

The three-dimensional periodicity of the function 
V(r) enables us to write the solution of (1) in the 
form of a Bloch wave 

~b(ko,r) = Y.~g(ko)exp[i 7r(ko + g).r], (2) 
g 

i.e. the scattered beams propagate discretely in the 
directions of the nodes {g} of the reciprocal lattice. 

By substituting (2) into (1), we obtain (Hirsch, 
Howie, Nicholson, Pashley & Whelan, 1965) a set of 
linear homogeneous equations, which can be written 
in the form of the eigenvalue matrix equation 

M,~ j = xJ~k j, j = 1, 2, ..., N. (3) 

Here OJ is the jth eigenvector 

,Jo 

$J = ~(1~) = ~ (4) 

and 

x j =  2K2(MOz - Kz) (5) 

is the jth eigenvalue of the dynamical matrix M, 

ii0 vo. Vho Dh Vhg 
M =  Vgo Vgh Dg ' (6) 

! : 

where Vgh = / 2 -  ~fV(r)exp[- i27r(g - h)r]dr, Dh = K 2 
- OK + h) 2, K 2 = K~ + Vo, Vo = Vhh, Z denotes the 
thickness of the crystalline slab, and/2  is the volume 
of the unit cell. The diagonal elements Dh can be 
rewritten in terms of the distance Sh (excitation error) 
of the node h from the Ewald sphere as follows: Dh 
= 2K2sh. 

Thus the wave vectors of electrons in a crystal turn 
out to be quantized: 

k{ = (kJoz,k{p) = (Kz + M/2Kz, Kp), (7) 

and the wave function $(r) is a linear combination of 
N Bloch waves: 

N N 

~(r) = Y aJ~J(r)= ~ aJ~(k~, r). (8) 
j = l  j = l  

Here a j is the excitation amplitude of the jth Bloch 
wave; d - a  j2 is the population of the jth 
quantum electron state and, hence, obeys the 
equality 

N 

Y. e J = l .  
j - - 1  

Physically, this means that the parameter d is the 
probability of finding the electron in the jth Bloch 
state. In the case of a non-absorbing crystal a j = 
~ * .  Then the wave function (8) can be represented 
by 

N 

O(r) = Z Oh(z)exp[i2zroK + h).r], (9) 
j = l  

where the hth diffracted-beam amplitude takes the 
form 

N 

~h(z) = ~, toJhexp(izrxJz/Kz); (10) 
j = l  

in other words, all Bloch waves excited in the crystal 
participate in the formation of each reflection of the 
electron diffraction pattern, and the quantity to~ = 
a J ~  is the excitation amplitude of the jth Bloch 
wave in the hth reflection. 

In the case of fast electron diffraction the 
inequality ]Voh/Dhl > 1 takes place for a very large 
number No of nodes. This means that at least No 
eigenvalues of the matrix M depend strongly on the 
off-diagonal elements, whereas another N - N o  
eigenvalues can be determined with good accuracy 
by the diagonal elements of the matrix M only. Thus 
the eigenvalue problem (3)-(6) reduces to the solu- 
tion of the dispersion equation of N0th order (No 
1) at least; and that is what the well known problem 
of multiwave electron diffraction amounts to. Gen- 
erally, multiwave diffraction is connected with the 
geometrical fact that many nodes are in a position 
close to the Bragg position IK] = IK + hi, because 
the magnitudes of the reciprocal-lattice vectors 
involved are small in comparison with the radius K 
of the Ewald sphere (for E = 100 keV, h/K ~ 10-2). 
It is clear that the Bragg condition will be satisfied 
best for the vectors {h} of the reciprocal-lattice plane 
perpendicular to the incident wave vector K. Taking 
into account the nodes of the reference plane only 
(the so-called zeroth-order Laue plane, hz = 0) is 
evidently adequate for the averaging of the crystal 
potential V(r) over the z direction, 

V(r)-~ V(p) = ~Vh exp(i27rh, p). 
h 

Physically this means that the fast electrons moving 
along the crystallographic axes or planes are not 
'sensitive' to the variations of V(r) in the direction of 
their motion. Such constant potentials along the z 
axis of atomic strings or planes are typical in theories 
of axial and planar channeling, respectively 
(Vorobiev, 1984; Kalashnikov, Remizovich & 
Ryazanov, 1980). The latter type of motion corres- 
ponds to the well known case of systematic reflec- 
tions in diffraction theory. 

Thus the use of the two-dimensional crystal 
potential V(p) (one-dimensional in the case of planar 



F. N. CHUKHOVSKII AND V. L. VERGASOV 155 

channeling) has the result that the original three- 
dimensional quantum-mechanical problem becomes 
two-dimensional (one-dimensional). Otherwise, the 
electron Bloch waves are quantized in the plane 
transverse to the incident wave vector in such a way 
that one of the main characteristics of the Bloch 
states is the transverse energy 

E j = K] - (kJoz) 2 ~- - (x  j + Vo - K'2p). (11) 

According to E~ values, the Bloch waves are divided 
into sub-barrier (E~ , ~ -  Vo), near-barrier ( lEVI-  
t Vol) and above-barrier waves (E~ ,> Vo) and the 
corresponding electron states are determined as the 
bound, valence and free states. 

classification of the electron Bloch states. If the 
operators {r} are elements of the symmetry group 
R(rl ,  r2, ..., r~) of the N-rank matrix M, then the 
N-rank matrix representation D(r) for an arbitrary r 
from R will commute with the dynamical matrix M 
since the symmetry is the integral of motion. In the 
general case the representation D(r) is reducible, i.e. 
the matrix D(r) can be brought to the block-diagonal 
f o r m  

-D(r) = T - ' D ( r ) T  = 

D°')(r) 0 ...  0 0 
0 D°')(r) 

°.. 
0 D°')(r) 0 ...  
0 0 D°")(r) 
• Ooo 

3. Symmetry classification of the Bloch states; 
reduction of the dynamical matrix 

Generally, in order to find the multiwave Bloch 
states, computer calculations are needed because the 
dynamical matrix M(6) is of rank N. Nevertheless, in 
some cases of practical interest the problem can be 
solved analytically. Indeed, the dynamical matrix 
contains information about the crystal symmetry and 
the boundary conditions in its off-diagonal and 
diagonal elements, respectively. So, for certain 
directions of the incident beam, in particular, along 
the crystallographic axes or when a set of nodes lies 
on the Ewald sphere, the matrix M in the zeroth- 
order Laue-zone approximation acquires the 
symmetry of one of the nine plane crystallographic 
groups. In such cases the totality of nodes in the 
zeroth-order Laue zone can be represented as a set of 
stars, each of them consisting of nodes which have 
the same excitation errors sh and which are 
connected with equal Fourier components Vh of the 
potential. As an example, in Fig. 1 such stars 
numbered 1 to 9 are shown for a (100) LiF crystal 
with the 200 node lying on the Ewald sphere. 

In cases in which the matrix M possesses the 
symmetry group R, its rank can be effectively 
reduced by making use of the group-theoretical 

'i 
9 

Fig. 1. The zeroth-order Laue plane (100) of an LiF crystal. The 
020 node is in the exact Bragg position. The symmetry group is 
C2v. The stars numbered include nodes: 1 (000, 020), 2 (220, 220, 
200, 200), 3 (040, 020), 4 (240, 220, 2---~0, ~40), 5 (420, 400, 400, 
~[20), 6 (440, 4~0, 4-20, 7440), 7 (060, 0;g0), 8 (260, 2~0, 240, 260), 
9 (460, 440, 440, 460). 

- Y~(~)n(p)D~)(r). (12) 
p 

In (12) each block D°')(r) is the pth irreducible rep- 
resentation of the element r and occurs n(p) times in 
the reducible representation. This is written using the 
symbol ~) for the direct sum. Each matrix D~P)(r) has 
the rank i(p) equal to the dimension of the irredu- 
cible representation DW)(r); for the plane point 
groups considered here, i(p) < 2. 

Since the dynamical matrix M commutes with the 
matrix D(r) reducible to the block-diagonal form, it 
can also be reduced according to Wigner's theorem 
(Streitwolf, 1967) to the block-diagonal form using 
the same matrix T. It is easy to see that the N-row 
columns q~),", /z = 1, 2, ..., i(p), n = 1, 2, ..., n(p), 
which satisfy the equality 

/to) 
rq~ )'" E 0,).- t~) = ~o~ D~, ( r )  (13) 

v = l  

and which are called the basis functions of the /z th  
row of the pth representation, are the columns of the 
matrix T. The basis functions ~0~ )," are constructed 
(Kogiso & Takahashi, 1977) using the nilpotent pro- 
jection operators 

H(R) 
~) DtO) , .x- p~,,,= H - ' ( R ) i ( p )  Y. ~,,, ( , ) , ,  (14) 

r = l  

which operate on an arbitrary function ~o of the 
N-dimensional space of the N-row columns to give 
the basis function of the /z row of the irreducible 
representation D°')(r). The functions {~o~ ),"} con- 
structed in this manner are orthogonal with respect 
to the indices p and rows /z of the representations 
D(P)(r) and in the general case are not orthogonal 
with respect to the indices n of their multiplicity. To 
overcome this inconvenience and, hence, to make the 
reduction matrix T unitary, we use the following 
technique (Vergasov & Chukhovskii, 1983). 

Consider, first, a separate kth star of the general 
form, i.e. such that the number Ark of its nodes is 
equal to the order of the group H(R) ,  Nk = H(R) .  
The reducible representation Dk corresponding to 
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this star is regular, Dk = DR, and the multiplicity of 
each D °') in Dk equals the dimension of D 0"), n(p, k = 
R) = i(p). Then the orthonormal set of the basis 
functions ~ ) "  corresponding to this star can be 
obtained by applying the operators p~o')(14) to an 
arbitrary Nk-rOw column; the index v is identified 
with the index n(p, k - R) (Landau & Lifshits, 1974)• 
If the kth star is a star of the special form, when N, 
< H(R),  the problem is solved by excluding the 
linearly dependent functions from the set of func- 
tions {~.)~} obtained at every fixed/z, and, next, by 
orthonormalizing the remaining functions. Consider 
now the construction of basis functions for the 
assembly of N nodes consisting of l stars N =  
E~k= 1 N, .  By the definition of the star the projection 
operator (14) does not mix the components of the 
N-row column corresponding to different stars and, 
therefore, the whole space of these columns can be 
represented as a direct sum of subspaces of the 
Nk-row columns. Then, the natural choice for the 
orthonormal set of basis functions is 

l 
~0~ ) ' 1 =  E @~0~?]¢ 1 S k i , - - . ,  ¢p~)n(p,l) 

k= l  
1 

= 2 0''*)8,,, 
k= l  

1 
y 8,2, . . . ,  

k - - I  
! 

= E 0 ~?i, "O''k) Sk,. (15) 
k=l  

It is essential that the explicit form of the reduced 
matr ix /~  = T - I M T  depends on the arrangement of 
the basic functions q~)'" in the reduction matrix T. 
For example, if we choose T in the form 

T = IITT)TL¢ ) ... T~)T~"'...II, 

TO') = I (16) 
it will give the dynamical matrix M in the following 
block-diagonal form (Kogiso & Takahashi, 1977) 

where 

T - ' M T =  M =  Y ( ~ i ( p ) M  0"), (17) 
p 

M0')= : : (18) 
• ) 

Then (3) will be transformed to 

M@J= xJ-~ j, j =  1,2,...,N, (19) 

where ~J = T-10L 
In view of (17), (19) will be broken into the set of 

equations 

M~)~JO')xJ0')~ jO'), j = 1, 2, ..., n(p). (20) 

It is clear that 

N =  2n(p). 
p 

Thus, to each irreducible representation D O') there 
correspond n(p) different Bloch states, any of which 
is i(p)-fold degenerate. This means that the electron 
Bloch states ~bJ(r) are classified not only by their 
dependence on the magnitude of the transverse 
energy E~ but also according to the irreducible 
representations D O') and their rows/z: j--*j(p,l.t). 

An important point of the reduction procedure of 
the dynamical matrix M possessing the symmetry 
group R is how to determine for any system of stars 
the highest number no--" maxp{n(p)}. This in turn 
coincides with the highest order of the dispersion 
equations each of which corresponds to the irredu- 
cible representation D °') . This could be done by 
means of the formulae obtained by Kogiso & Taka- 
hashi (1977) for n(p) for all plane symmetry groups. 
However, the problem can be solved by the simple 
method proposed previously (Vergasov, Chukhovskii 
& Pinsker, 1982). Using the characteristic properties 
of the stars it was proved that 

l for groups Cs, C,, C2v 
no = max{l, l' + lg} for groups C,,v, n = 3, 4, 6. 

Here l and l' are the total number of stars with and 
without the central node, respectively; lg is the 
number of stars of the general form. 

In the cases of interest, especially in high- 
resolution electron microscopy, the electron beam 
falls normally onto a crystal. The following state- 
ment will be true here. The Bloch waves of the 
unitary irreducible representation only are excited at 
normal incidence, and the number of these waves is 
equal to the number l of the stars involved. The jth 
Bloch wave excitation amplitude tr j is determined by 
the component 0~* corresponding to the incident 
beam. At normal incidence the corresponding node 
000 is central in the electron diffraction pattern and 
does not change its position under the action of the 
operators O') p~,~ of the symmetry group R. Then, using 
the formalism of the operators, we obtain 

~bJo 0") - p ~ l  - Y . D ~ r ) -  8p, (21) 
F 

in accordance with the orthogonality relations for 
irreducible representations (Streitwolf, 1967). 
Further, since the unitary representation D(")(r)= 1 
is one-dimensional, i.e. i (u)= 1, the reducible rep- 
resentation Dk describing each kth star contains the 
unitary representation D (") only once, n(u, k ) =  1. 
Hence, the number of Bloch waves in the unitary 
representation is equal to the total number of stars 
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involved, 

1 
n(u) = Y n(u, k) = l. 

k = l  

The above result permits us to restrict our con- 
sideration of (20), in this ease, only to the block of 
unitary representations M ~u) = (T(U)) - ~ M T  ('). It is 
essential that we can obtain the general expression 
for M (") since the structure of unitary representations 
does not depend on the type of the group R. The 
basis function corresponding to the kth star takes the 
form ~01~.)k '1+ = Nkl /2 ( l l . . . 1 )  SO that 

10 ... 
0 N{ 1/2 ... Nz  1/2 0 ... 

(TO0) - 1 = 
0 ... 0 N ;  1/2 ... N ;  1/2 0 • . .  

and the matrix T (u) is obtained from (Te')) -1 by 
interchanging rows and columns. 

Denoting the hth node of the kth star with the 
index k, h - - h ( k ) ,  and bearing in mind the fact that 
at the normal incidence Ds~k ) = --g2(k), we write the 
matrix M in the form 

M =  

0 Vo(l)g(2 ) Vo(l)g,(2 ) . • .  Vo(l)h(3) •• ,  

Vg(2)o(,) - g 2 ( 2 )  Vg(2)g,(2) Vg(2)h(3) 

Vg'(2)O(l) Vg'(2)g(2) - g ' 2 ( 2 )  Vg,(Z)h(3 ) 
: : : ". 

Vho)oo) Vho),(2) Go),'(2)...-h2(3) 
: : : ". 

Taking into account the relations V0(l)g(2 ) - -  V0(l)g,(2 ) 

= ... and 

U~ G ~ U~ 
Z Z Mh(k)~)= Nk Z Mh(k)~(~)= Ns Z Mh(k)~(,, 

h = l g = l  g = l  h--I  

we find the block M ~u) finally 

0 

N2t/21/ 
• g ( 2 ) O ( l )  

M~u)_- 
N31/2r/ • h ( 3 ) O ( I )  

N ~/2b" M~/2~." 
2 • O ( l ) g ( 2 )  a v 3  • 0(1) /1(3)  • . .  

D~2~u) (N3N2,),/2y.V~2)h~s) ... 
g 

(N3N21~I/2ZV (u) 1 h ( 3 ) g ( 2 )  D h ¢ 3 ~  
g 

(22) 

where 

D( ,~)  = - g 2 ( k )  + ~'  VgCk)hCk) 
g 

(23) 

and the symbol Yg denotes, as usual, the summation 
over all indices g(k) except for g(k) = h(k). 

A different classification of the electron states in 
crystals is suggested in the framework of channeling 
theory (Kambe, Fujimoto & Lehmpfuhl, 1974). If  
the levels of the bound states E~  , ~ -  Vo in the 
potential well of the atomic plane or axis are suffi- 
ciently low-lying, these states are not affected by the 
potentials of the neighboring planes or axes. For this 
reason, in channeling theory, the approximation of 
an isolated plane or axis potential is utilized, along 
with the notion of continuum potential for a plane or 
axis. For planar channeling, corresponding to a one- 
dimensional quantum-mechanical problem, the elec- 
tron states can be classified as symmetric and anti- 
symmetric (Landau & Lifshits, 1974)• For axial 
channeling the radial part R,Lo) of the wave func- 
tion ~(r) 

Z a'a R,,t(p)exp( il~o) 
n,l 

satisfies the equation 

R"~(p ) + p - l R" ~p ) - 12 p - 2 R,a(p ) 

= [ v o )  - E " d ] R . Z o ) .  

This equation takes the same form as the one for the 
one-electron atom, so that the electron states are 
classified as ns, np, ... according to the azimuthal 
quantum numbers l = 0, l = 1, ..., respectively• It is 
clear that when the beam impinges strictly parallel to 
the atomic string, the only populated states in the 
crystal will be the s states with radial symmetry of 
density distribution. When the beam deflects from 
the crystallographic axis, the populated states will 
also be the states with l # 0 whose density distribu- 
tions have no radial symmetry. 

Now it is easy to establish the relationship between 
the quasi-atomic and group-theoretical classifications 
of the electron states. In the case of planar channel- 
ing, the diffraction pattern is a sequence of systema- 
tic reflections and has the symmetry Cs with two 
irreducible representations. The symmetric electron 
states correspond to the Bloch waves of the unitary 
representation• Likewise, for axial channeling, the s 
waves correspond to the states of the unitary rep- 
resentation, and the states with a non-zero orbital 
momentum correspond to non-unitary states includ- 
ing the two-dimensional ones. 

It is to be noted, however, that the group- 
theoretical classification is more rigorous and general 
since it does not use the isolated axis (plane) approxi- 
marion• In addition, dynamical theory describes 
equally well sub-, above- and near-barrier states. The 
latter, as will be seen from the following, plays a 
crucial role in the construction of the electron wave 
function in question• 
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4. Perturbation theory 

The rank of the dynamical matrix is so high that, in 
spite of its reduction in order to construct an analytic 
solution to (3), it is necessary to use the perturbation 
method. For simplicity we consider the case of 
normal incidence, i.e. when only the Bloch waves of 
the unitary representation are excited and the block 
M (~) acts as an initial dynamical matrix. It is easy to 
see that the Bloch waves of other irreducible rep- 
resentations can be constructed in a similar way. 
Moreover, the perturbation method is also applic- 
able to the original dynamical matrix M(6) when it 
possesses the trivial symmetry group C~. 

Let us arrange the stars in block M ~") in 
descending order of the a parameter [see (22)]: 

a l~ = ]N~/ZVoo)g(k)/D(~)k) I (24) 

(for simplicity, here we consider V0o)gq,);~ 0). The 
above parameter determines the strength of the inter- 
action between tl:e transmitted beam )(1) and the Ark 
diffracted be~ ms of the kth star; it could also be 
qualitatively interpaeted as the amplitude of transi- 
tion from the ground (k=  1) o th tc'h (k;~ 1) 
electron Bloch state. 

I fatT)_>l  for the stars k = 2 , 3  .... , !  t ,e  eigen- 
values x w'), x 2~), ..., x L('> of the matrix /la "; depend 
essentially on its corresponding off- tiagonal 
elements and in the zeroth-order approximation :he 
corresponding electron states should be found from 
the Lth-order dispersion equation 

detl]M~) - x~Ell = 0, j = 1, 2 .... , L, (25) 

where M ~  > is the L-rank matrix M ~"> (22). 
In other words, in this case the diffracted beams of 

the L stars are strongly interacting and must be 
considered simultaneously. If the number L is not 
large, we have in practice Ix u) I - Vo, o,,,I and the • . ( ) . . . .  

corresponding electron states with EJ~ z',") = - ( x ~  u) + 
V0) are bound or valence states• 

For the other systems k =  L + 1, L + 2, ... the 
parameter a t~, ) ,~ 1 and the eigenvalues of the matrix 
M ("~ are determined in the zeroth-order approxi- 
mation by its diagonal elements in such a way that 
the corresponding electron states with EJ~ k,u) --g2(k)  
are free states. 

Thus, the zeroth-order M ~u) matrix has the form 

li 0 M(") = D(~.+2 ) ° ' -  (26) 

and the corresponding eigenvalues and eigen- 

functions are determined as 
= + = 

O~ j(L'u) = , "",0--~ L + l ( u )  .__ , • ' •  ( 2 7 )  

where the ~ u )  are the eigenfunctions of the matrix 
M~U) 

j =  1, 2 . . . .  , Z. (28) 

The form of the solutions (27) permits us to draw 
an important conclusion: the Bloch waves, solutions 
of the Schr6dinger equation, are determined by the 
complete set of stars of reciprocal-lattice vectors, but 
they are actually determined by a finite number of 
stars, and in the case of above-barrier waves each 
Bloch wave is largely determined by one such star. 

For the non-relativistic electrons considered here, 
the transverse potential wells V(p) contain no more 
than 1-2 bound states (e.g. Steeds, Jones, Cooke & 
Loveluck, 1977). Therefore, the total number of 
bound and valence states L is equal to or less than 3 
as a rule. As a result, these and the free states can 
first be calculated analytically in the zeroth-order 
approximation and then with the desired accuracy by 
the perturbation method (Vergasov, Chukhovskii & 
Pinsker, 1984). Correspondingly, the perturbation is 
the matrix U t~) = M ~u) - 0 M  tu) which describes the 
interaction of sub- and near-barrier waves with the 
above-barrier waves and also the interaction among 
the above-barrier waves themselves. 

From the solutions in the zeroth-order approxi- 
mation it is seen that the Bloch wave excitation 
amplitudes 00 ~+k,, k = 1, 2 .... are equal to zero and, 
consequently, only L bound and valence states may 
be strongly populated in a crystal. Accordingly, the 
electron wave function 0J(r) is for the most part 
determined by L sub- and near-barrier Bloch waves. 
Physically, this result is explained by the fact that 
most electrons populate states with the least 
transverse momentum. 

It is to be noted that the conclusion about the 
predominant population of a few electron states was 
made by Komaki, Asano & Fujimoto (1977) on the 
basis of computations in the framework of channel- 
ing theory. The energy increase of the incident beam 
leads, apparently, to an increase in the number of 
levels in the potential well. In this case the pertur- 
bation method is not efficient. However, the 
increased number of bound states permits one to go 
over to a quasi-classical description of the diffraction 
phenomenon. 

Let us now construct solutions of (20) using per- 
turbation theory. We expand the unknown eigen- 
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function ~J in a series of eigenfunctions of 
zeroth-order approximation (for simplicity, we omit 
here the symbol of unitary representation) 

-0/ = Y C(j,  O o-~ '. (29) 
i 

Then, substituting (29) into (20) one obtains the 
equation 

C ( j , s ) ( x / - o X S )  = Z C ( j , i ) U  ~', (30) 
i 

where 
Usi = O~f  + U o ~  i 

and 
W L +iL +s = ( N s N  F l)l/2y. Vg(Oh(s)" 

g 

The coefficients C(j,  s) and the eigenvalues x j are 
expressed as series (Landau & Lifshits, 1974): 

C ( j ,  0 = ~ji + I C ( J ,  0 dl- 2 C ( j ,  i) + ... (31)  

x s = oX s + ~x j + 2x j + ..., (32) 

where ,C(j,O, , x  j are assumed to be of the same 
order as (U)". 

Upon substitution of (31) and (32) into (30) we 
find the corresponding corrections by equating in 
(30) the terms of the same order. From the equation 

lxJ6ys + iC(j ,  S ) (oM-  oX')= U ~s (33) 

which follows from (30) if only the first-order terms 
are retained, we obtain 

,X j = O, iC(j,J) = O, 1C(j, s) = USJ/(oxJ - o X 0 . ( 3 4 )  

Thus, in first-order perturbation theory the solu- 
tions have the form 

0 + 1 ~----j(L) = 
1 C ( j ,  L + 1) II ..., 

II j~= l I C [ L  +ll,J( L ) ] ~  

~ L + I =  (35)  
o+1 I[ lC(L+ ! , L + 2  ) 

It is easy to see that now the above-barrier Bloch 
waves are excited, which leads to the 'appearence' of 
the corresponding stars of reflections in the electron 
diffraction pattern. 

Finally, we obtain the following expressions for 
the diffracted beam amplitudes: 

L 

O+ l~h(k) = O~h(k) = Z ~//~)~l)O~(k)exp(izrx~Kz Iz), 
j = l  

k = 1, 2, ..., L; (36) 

L 
O+l~l lh (L+n) -  ~. i M - - l / 2 d . i *  i"rL+nj(L) --  ~a*L+n tV 0(l)W 

j = l  

x exp[i-tr2- ~(xJ L + xL+")Kz ~z ] 

X s in [z r2 - l (x{-  xL+")Kz lz] 

X [2-1(x{ - x L + n ) ]  -1 ,  n = 1,2, ..., 
(37) 

where the relation O~,(k) = N~-l/2~,(k) has been taken 
into account. 

The physical meaning of the first-order expressions 
(36), (37) is the following: the amplitudes of the 
diffracted beams belonging to L stars coincide with 
the zeroth-order values, whereas the expression (37) 
for the amplitudes of the beams of the other stars is 
like that given by kinematical theory. The only 
difference is that the role of the transmitted beam is 
played by the beams belonging to L stars. 

In second-order perturbation theory (30) takes the 
form 

2xJrj~ + 2C( j , s ) (oxJ -  ox~) = ~'.IC(j, OU'. (38) 
i 

Using the normalization condition for the eigen- 
functions, from (38) we obtain 

2c(j,  s) = X i c ( j ,  Ous'/(oX +-  oxS), 
i 

2C(j , j )  = - 2 -  lYlmC(j, s)[ 2, 
$ 

2x j = Z 1C(j , i )W j'. (39) 
i 

Hence, the second-order solutions are the fol- 
lowing: 

0 + 1 + 2 ~  j(L) = 

L 

~ + •2C(j, s ) - ~  
s 

l + 2 C ( j ,  L + 1) 

1 + 2 C ( j ,  L + 2) 

~ L+I 
0+1+2 

L 

Z,  + 2C[L + 1 , j (L ) ]~  
J 

I+2C(L + 1 ,L  + 1) 

1+2C(L + 1, L + 2) 
(40) 

Retaining the second-order terms, we finally 
obtain for the diffracted beam amplitudes 

L 

o+ ~ +20h(k) = Y.o+l+2a~]exp(iTro+2x~Kz~z)  (41) 
j = l  

L+n • +n - + Zo+ l+2OSh(k) exp(t'rro+zX L K~ 1z), 
n 
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L 

0 + 1 +  2~llh(L+n) = ~ O+l + 2oY~2+ n)exp(irro + z x ~ K F  lz )  
j = l  

L+n  
"+" 0 + 1 + 2Wh(L + , o e x p ( t ¢ r o  + 2 XL +"K~- lz) 

.L+s  
dr- ~. O+l+201h(L+n) 

x exp(iTr0+ 2 xL +sK;- lz), (42) 

where 
L 

j( L ca s( L • ..a(z) = Ct~l,¢t{~ I + y. Oool $h(kl2C[j(L),s(L)] O+ 1 + 2t°h(k) 
s = l  

L 
s(L ca j ( L )  ca • 

"1- ~" 0 0 ( l l  Oh(k)2 C [ j ( L ) , s ( L ) ] ,  ( 4 3 )  
s = l  

L 
_ L+n  d,s(L)ca d,j(L) 

0+l+2Wh(k)  --  Z tF0(1 ) V/h(k ) l C * [ L  + n,s(L)] 
s , j= 1 

• - 1/2 x 1C[(L + n,j(L)]Nf~+., (441 

. ' lA r -  i/2 (45) 
o+ , + 2  2+n) = + L + , +n  , 

L 
r +n =jZl n,j(L)]Ni.+ 0 + 1 +  20Jh(L +n) ~t]Jo(~ll*l + 2 C * [ L  .-I- " -1/2n, .= 

(46) 
L 

.. ,L+s --  S" ,I,j(L)Ca o+l+2~,h(r +n)--j=~l~.oo) 1C*[L + s,j(L)] 

x ,C(L + s, L + n)NT+ 1/2, (47) 

where k =  1,2,..., L, n =  1, 2, . . . ,s  ;~ n. 
It is worth noting that the expressions obtained 

above are valid if the inequality 

I,c(i,j)l < 1 (48) 

holds. 

5. Electron Bloch waves for calculating diffracted 
beam intensities and crystal lattice images 

From the expressions (40)-(47) it follows that all 
reflections of the electron diffraction pattern can be 
divided into two groups. The first group is all reflec- 
tions belonging to L stars which contain the major 
part of the intensity of the incident beam. It is easy 
to see from (41), (42) that the sub- and near-barrier 
waves contribute mainly to the intensities Ih(z) of 
these reflections. Since the number L of such waves is 
rather small, this leads to a relatively simple depen- 
dence of the intensity of these reflections on the 
crystal thickness z. For example, when L = 2, which 
is often the case, this dependence is quasi-sinusoidal. 
In the reflections relating to the second group the 
excitation amplitudes oJ~(2+,) (n = 1, 2, ...) are com- 

L + .  parable with the amplitudes OJh(L+,) and are the 

Table 1. The parameters of  multiwave diffraction for 
the problem shown in Fig. 1 (E = 75 keV) (1 analytical 

calculation, 2 computer calculations) 

j(p) l(u) 2(B,) 3(u) 4(B,) 5(u) 

1 - 20.0 - 2.8 23-1 34.2 64.7 
E~ ) (eV) 2 - 21.2 - 2-9 22.2 34.1 65.5 

l 4.18 4.96 0.776 0.030 0-028 
o ~  x 10 2 4.17 4 -94  0-785 0-039 0.036 

first-order quantities [cf. (45), (46)]. This is the 
reason why the dependence Ih(z) for the second 
group of reflections becomes more complicated. 
Moreover, the interaction of the free state E L÷n with 
bound and valence states E:(, z) decreases with 
increase in the number n and becomes comparable 
with the interaction with the nearest states ELi +"-  l, 
E L + n +  I. 

It is interesting to note that sometimes the curves 
Ih(L÷,)(Z) have the same positions for the extrema as 
the kinematical curves. This is so because with a 
small number of bound states the levels E :(L) are not 
low-lying, as a rule, so that E :(L) < E L÷", and E L÷" 
.-~ 17L+, L~.I. kin = g2(  L + n )  --  V 0. S e v e r a l  m u l t i w a v e  c a l c u l a -  
t i o n s  for lh(Z) at normal incidence were carried out 
by Vergasov, Chukhovskii & Pinsker (1985). 

Here we represent the results for the calculations 
of the 020 reflection in the diffraction pattern shown 
in Fig. 1. As seen from the values of the multiwave 
diffraction parameters listed in Table 1, the highly 
excited waves for the 020 are three Bloch waves (L = 
3): two Bloch waves (sub- and near-barrier ones) of 
the unitary representation, L tu) = 2, and one near- 
barrier wave of the one-dimensional representation 
D w,). In this case the zeroth-order Bloch waves of the 
unitary representation D <u) are determined by the 
second-order dispersion equation corresponding to 
two stars labeled 1 and 2 in Fig. 1 and the zeroth- 
order near-barrier wave of the D <B') representation is 
obtained from the linear dispersion equation corre- 
sponding to star 1. In Fig. 2 the dependence Io2o(Z) 
calculated analytically by means of these Bloch 
waves is shown. It is the sum of three cosinusoidal 

o, F 
/ / /  // 

0 2~0 £00 

Fig. 2. The 020 reflection intensity/o20(,7.) versus thickness z of  the 
(100) LiF crystal in the case shown in Fig. I. The electron 
energy E = 75 keV. Curves: (1) numerical calculation including 
30 Bloch waves; (2) analytical calculation with three Bloch 
waves; (3) calculation within the two-beam (000, 020) approxi- 
mation; (4) calculation within the kinematical approximation. 



F. N. CHUKHOVSKII  AND V. L. VERGASOV 161 

terms and is in good agreement with numerical cal- 
culations using 30 Bloch waves. 

In regard to the formation of crystal lattice images 
in high-resolution electron microscopy (HREM) the 
intensity distribution in the image is given by 

[O(P) 2 = Z. O~,0j(p)exp(i2rrk~z) 2 (49) 
J 

neglecting the transfer function of an electron micro- 
scope. 

In terms of the Bloch-wave distributions 

O+(P) = Y.J/Jh exp(i2rrhp) (50) 
h 

where p = (x, y) is given in the image plane. Notice 
that under certain conditions H R E M  lattice images 
can be formed by a single Bloch wave (Kambe, 
1982). 

The relationship between the Bloch waves and the 
stars of the reciprocal-lattice vectors (27) permits us 
to determine a priori the main features of the elec- 
tron wave function (50) in the unit cell and also to 
evaluate the penetration of these waves in the crystal. 
Since the strongest diffracted beams are close to the 
transmitted beam 000, the highly excited sub- and 
near-barrier wave functions are concentrated on 
atom rows. On one hand, this means that in the case 
of thin crystals these highly excited waves are local- 
ized on atomic sites, and the subsidiary maxima of 
l//j(L)(p)]2 do not correspond to positions of atoms. 

( i t  
i ,,, 

~ 0 

a -2o 

"50 

. El A " 

v 4 

-=lz 

-q 
o,~.io 

0 ...~ 

0 t -  

-.I o ~ a/z 

Fig. 3. Positions of levels of the transverse energy E~ in the 
potential well V(x, y=0) and the distribution densities 
[@~*¢d(x, y = 0)12 of the corresponding electron states in the 
unit cell of (l l l) Si at the electron energy E = 100 keV. The 
solid curves are the computed results and the broken lines are 
the analytical calculations. 

On the other hand, it is just this circumstance that 
accounts for the stronger absorption of these waves 
compared with those above the barrier. The latter 
correspond to the stars of the weak reflections with 
large magnitudes for the reciprocal-lattice vectors 
and, therefore, their spatial densities oscillate. Never- 
theless, since the above-barrier waves are not so 
highly excited as the sub- and near-barrier waves, 
atomic identification is feasible. At the same time, 
owing to their greater penetrating power, the above- 
barrier waves dominate starting from a certain crys- 
tal thickness and H R E M  lattice images become com- 
plicated. The above results are illustrated in Fig. 3. 

6. Bloch waves in an imperfect crystal with point 
defects 

For an imperfect crystal it is assumed that the lattice 
potential V(r) can be represented as a sum of two 
components 

V(r) = V(p) + W(p ,z )  (51) 

where the term W(p, z) corresponds to the deviation 
of the real potential from the z-averaged potential 
V(p) of a perfect crystal. 

In this case the wave function will be expressed as 
a series of Bloch waves 

@(r) = YaJ(r)OJ(p)exp(2,n-ikJozZ), (52) 
J 

where the flh amplitudes ~U(p) obey the equation 

ApOJ(p) + 4 r ? [ ~ -  (kJoz) 2 + V(p)]~0J(p) = 0. (53) 

Substitution of the wave function (52) into the 
Schr6dinger equation (1) yields, in view of (53), 

2[i4¢rk~z0J(p) VzaJ(r) + 2 VpaJ(r) VpOJ(p) 
] 

+ OJ(p),~j(r)+ ¢,JCO)AzaJ(r) 

+ 4~rZW(r)d(r)@JCo)]exp(2~'iUozZ) = 0. (54)  

If K is the characteristic length of variation for the 
function aS(r) and G is the characteristic magnitude 
of the receiprocal-lattice vectors involved, we can 
easily obtain the following ratios of the first four 
terms contained in brackets on the left-hand side of 
(54): 

47rUoz:4rrG:x- l:x-1 (55) 

For fast electrons we have 

GlkSoz <_ 1, x - '  >>. G. (56) 
Next, we represent the unknown function aV(r) to 

first order by 

a s ' "  oa j + la  j, oa s = ~O~*, (57) 

where the l a j values are assumed to be of the same 
order as W. 
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Substituting the expression (57) into (54) and 
taking into account the inequalities (56) we find to 
first order 

Y~J(p)exp(2zrikJozZ){ikJozO[la(r)]/Oz + 7rW(r)} = 0. 
J (58) 

The orthonormalization property of the functions 
0J(p) within every nth unit cell yields 

f ~,J*(m + p)O'~o. + p)dp = ~ji, 
12 

where p. is the radius vector of the nth unit cell in 
the plane (x,y). We then obtain the first-order solu- 
tion of (58) in the form 

lOt(Z- Zo, p , , -  Po) = izc(kJoz) - l fWJ' (  z -  Zo, p , , -  Po) 

× exp[2zri(k~z-Uoz)z]dz, (59) 

where 

WJi(z -  Zo, p,, - po) 

= f ~ ; * ( p .  + p - po) W(p.  + p - po, z -  zo) 
12 

X oi~On "1- p - - p 0 ) d p ,  (60) 

and r0 = (P0, Zo) is the radius vector of a point defect 
located in the unit cell with n = 1. 

The formulae (52), (57), (59), (60) yield the first- 
order solution of the problem of scattering of Bloch 
waves by the crystal lattice with point defects and 
represent the generalization of the solutions obtained 
by Indenbom, Tochilin & Chukhovskii (1988) on the 
basis of channeling theory. Unlike the case of a 
perfect crystal, now the excitation of Bloch waves, in 
the non-unitary irreducible representation of the 
symmetry group, occurs even under the condition of 
normal incidence. Equation (60) enables us to find 
the selection rules for exciting new Bloch waves in a 
crystal depending on the type of defects and, in 
principle, to elucidate the role of these Bloch waves 
for detecting point defects on a HREM image. 

7. Electron-optical formulation of the 
multiwave diffraction theory 

The electron-optical formulation of the multiwave 
diffraction theory elaborated originally by Cowley & 
Moodie (1959) is widely used for numerical calcula- 
tions of HREM lattice images. Here we shall give the 
derivation of the main equations of the Cowley- 
Moodie theory starting from the Schrrdinger equa- 
tion in the integral form (Ishizuka & Uyeda, 1977; 
Danishevskii & Chukhovskii, 1982) 

0 (r) = exp(i2zr Ko. r) + zrfdr' 6 (r') V(r') 

x exp(i2zrKolr - r ' l ) / I r  - r ' l  (61) 

Substituting the wave function ~ (r) = 
exp(i2zrKo, r)~o(r) into (61) and using the parabolic 

approximation of Green's function G(p,z) = 
( iAz)- lexp(i . trpZ/Az) we obtain for the unknown 
function ~o(r) the Volterra integral equation of the 
second kind. 

~o(p, z) = f dp'  q~(p', zo)G(p - p', z - Zo) 
z 

+ i r a f d z ' f d p '  ~o(p', z ')  
20 

x V(p' ,  z ' )G(p - p', z - z'). (62) 

Equation (62) is a convenient form for numerical 
calculations of the electron wave function ~0 (p, z). In 
practice, however, the Cowley-Moodie equation 

2 

q~ (p, z) = f dp'  ~o (p', zo)exp{izr A f dz'  V(p, z')} 
20 

x G(p - p ' , z -  Zo) (63) 

is utilized. It is based on the electron-optical analog 
of electron diffraction in a crystal and follows from 
(62) if one assumes 

~o(p ' ,  z ' )  = ~ ( p ' ,  Zo), 

G ( p  - p ' ,  z - z ' )  - -  G ( p  - p ' ,  z - Zo), 
Z Z 

1 + iTr a f d z ' V ( p ' , z ' ) = e x p [ i T r  a f v ( p , z ' ) d z ' ] .  
zo zo (64) 

The approximations (64) are justified when the 
inequalities 

pcfr < z - Zo < p~ff27r A- 1 (z - Zo > 0) 

are satisfied, where Pefr is the characteristic transverse 
length of variation of the potential function V(p, z). 

In order to calculate HREM lattice images it is 
convenient to make use of the recurrent relations 
between the Fourier components 0,(hk), for the nth 
elementary layer in a crystal. 

O (hk, z.) - - J { ~ o r o ,  z . ) ;  hk} 
= S-l fd~o(p,z , , )  

x exp{-  i2~rp.(ha (*) + kb (*))}, (65) 

where S = l ax  bl is the area of the unit cell on a 
plane perpendicular to the z axis; a (*), b (*) are the 
reciprocal-cell vectors corresponding to the unit-cell 
vectors a, b of the crystal lattice. 

As a result, from (63), we obtain 

Oo(hk) = 6hoko, 

~O. + l (hk )=  ~t.(hk)p. + ~(hk)*q. + l(hk) (66) 

(the symbol • means summation--convolution). Here 
the function q,, + l(hk) is the Fourier transform of the 
phase function for the electron traversing a crystal of 
thickness Az~ + 1 = z, +1 - -  Zn: 

{[  z ] /  
qn+ l(hk) =J-  exp i~rA f d z V ( p , z )  ;hk  . (67) 

Zn 
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The function p ,+ ](hk) is the Fourier transform of 
the electron propagation function in vacuum 

p.  + ,(hk) = S -  ~r{G(p, z,, +, - z.); hk} 

= exp(i2zrAz. + lSnk) (68) 

where Shk is the excitation error of the reflection hk0. 
Equations (66)-(68) describe the layer-to-layer cal- 

culation of the amplitudes O,,(hk) (the so-called 
multislice method). 

HREM lattice images are described by the con- 
trast function 

[ 1[ 2 = Y. O(hk)exp[ihp + it'(h) (69) 

where the electron-optical phase function x(h) is 

x(h)= -- '//',~Afh 2 "[- 2-n~,~3Cs h4 (70) 

where Af  is the defocusing parameter and Cs is the 
spherical aberration coefficient. The summation in 
(69) is over the diffracted beams passing through the 
aperture of the objective lens with size A. As follows 
from (69), the contrast function /Co) is essentially 

determined by the defocusing parameter Af and by 
the shape and size of the aperture A. Using ring 
apertures, for example, one can form 'fragment' 
images caused by reflections belonging to the star of 
equivalent nodes in the reciprocal lattice. These 
images will not depend on the electron-optical 
properties of the microscope and will be determined 
by the crystallographic function 

ot,(x,y) = Y~ cos [2zr(h~ + k~y)], (71) 
h,.k, 

where hs, ks are Miller indices of the reflections 
belonging to the sth star; x, y are the dimensionless 
coordinates in the unit cell of the crystal. 

In the derivation of (71) we assumed that the stars 
consist of an even number of nodes. If, in addition, 
the main contribution to the image is provided by 
the reflections belonging to the first star, plus the 
central node, the contrast function (69) can be 
written as 

/Co) -Io(0)1 = + 10(h,)lZ~Go) + 210(0) 0(h,) a,Go) 

x cos {F(h,) + x(h,)}, (72) 

 lteljq 
I L i A d  

(a) (b) (c) (d) (e) (f) 

I, | " w  ~ . i . ~ / I  ~ A , , . . W . . ~  

| - | ; t  i I ! , , I , ]  

( g )  (h) (i) q) (k) (0 

r . -  _ ..... F ~ W O q  F g V I ~  w t ~ J W  

l e!lOl lOlOI Io iO l  
} 1t!,0!1 PaOiql } i l i a  

Iql)!OI tOIOI l a l l l  
h i 4 1 b i i  h J,aiihglm n~m,,~llli 

(m) (n) (o) (p) (q) 

Fig. 4. Computer-simulated transmission images of the (110) Au crystal lattice. The film thickness is 40 unit cells (120 A), C, = 1.8 mm, 
zlfvaried from -200 to 200 A with a step of 25A. 17 diffracted beams were included and the lattice spacing along (110) was divided 
into six layers. 2 x 2 unit cells. 
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where the relative phase of the diffracted beam h is 
equal to 

F(h) = Im{ln~b(h) - ln0(0)}. (73) 

The contrast function (72) varies periodically with 
Af, the period being equal to 

Afp = 2/ah 2. (74) 

It also follows from (72) that the contrast function 
l(x, y) has extrema at the points (x, y) determined by 
the relations 

aal (x ,y) /ax  = 0, aa~(x,y)/ay = 0. (75) 

As seen from (75), the extremum positions do not 
depend on the electron-optical phase function (70). 

The condition of highest contrast is realized if the 
equality 

cos [F(h,) + X(hl)] = _ 1 (76) 

holds. The quasi-kinematical scattering, when the 
diffracted beam amplitudes are small, 

,f"~ 1, h # 0 
I¢,(h) l t = 1, h = 0 ,  

is physically of interest, and the contrast function 
I(p) is a linearized function of the amplitudes ~ (h) 

I(p)  "--" 1 + 2Yl~P(h)lcos[2"trhp + F(h)  + x(h)]. (77) 
h 

The expression (77) can be viewed as a hologram of 
the crystal lattice owing to the interference of the 
diffracted waves with the reference wave, the 
accuracy being controlled by the electron-optical 
phase X (h). 

It is interesting that in this case the expression (77) 
can be used to solve the inverse problem of diffrac- 
tion - the reconstruction of the scattering function of 
an object 

q~(p) = Y4b(h)exp( i2 zrhp). 
h 

This method makes use of two-dimensional Fourier 
transforms l,¥,(h) obtained in experiments at differ- 
ent Af,,, values (m = 1, 2, ...). It was applied in the 
famous work by Kirkland, Siegel, Uyeda & Fujioshi 
(1980). 

In the general case, when the linearized approxi- 
mation (77) is not applicable, computer simulations 
based on formulas (66)-(70) are used in order to 
study the formation of HREM images and to com- 
pare them with experiment. 

As an example, we present here the results of 
computer simulations of the crystal lattice images of 
Au and AI-Y garnet. The atomic scattering ampli- 
tudes were calculated by the Doyle & Turner (1968) 
method. In order to draw simulated images a ten- 
point scale of ln(Im~/Imin) within the unit-cell base 
was used. 

In Fig. 4 the (110) Au lattice images are shown. In 
accordance with conditions (75) the coordinates of 
the extrema of the contrast function (72) are equal to {go}={0 

yo 

and form the sets of points 

{xo} = {:i} { 1  = {7 
Yo Yo 0 ' 

the first (second) of which corresponds to maxima 
and minima of/Co) at cos(F + X)= -+ 1 [cos(F + X) 
= ~- I]. The defocusing period Alp (74) is equal to 
300 A and is in good agreement with the contrast 
variation of images calculated numerically (see Fig. 
4). It is also seen that at certain A f  values the 
Au-atom images are surrounded by 'halos'. This 
effect is observed when the interference of the dif- 
fracted beams belonging to different stars is taken 
into account and it is not observed when only the 
reflections belonging to the first star are taken into 
account. 

Fig. 5 shows the (111) Y3AIsO~2 crystal lattice 
images. As follows from calculations, the contri- 
bution to the image is provided mostly by the 
yttrium atoms. The projections of the yttrium atoms 
on the unit-cell base form two types of groups such 
as 'hexads' and 'triads' and have six- and threefold 
axes of symmetry, respectively (see Fig. 6). In the 
calculations the unit cell was divided into 24 layers; 
the calculation was carried out including 121 diffrac- 
ted beams, i.e. the radius of the aperture was 
0.4 A- !  

The 'hexads' and 'triads' of atoms are easily recog- 
nizable in Fig. 5. The spacing between hexad images 
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Fig. 5. Computer-s imulated images of  (111) A I - Y  garnet; C, = 
1.8 ram, 121 diffracted beams. (a) The film thickness is 3~2 of  
the crystal spacing (30 A), f = - 800 A; (b) the film thickness is 
1.25 of  the crystal spacing (13 A),f= - 9 0 0  A. 2 x 2 unit cells. 

I • • i o  4 • • ~0 • • 
/5 ._" % _.1_ . ? ' . . . .  

d . - - -  -o  - , / . -  . -  - 0 " ; -  

/ , . . . .  , . . . / , . . . .  :.o. ,, 
4 ~"_. _.Z."_.- . /  

Fig. 6. Projections of  the Y atoms on the base of  the unit cell of 
AI-Y garnet. 2 x 2 unit cells. 
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is 10 A and that between triad images is 17/It, which 
correspond to the distances between the projections 
of the corresponding groups of atoms. The images 
with the threefold axis of symmetry are obtained 
when the atoms located at different heights provide 
essentially different contributions to the scattering. 
For example, when the thickness of the crystal object 
is 1-25 times as large as the lattice spacing along 
(111), the beam passes twice through the atoms 
located at heights ~ and ~ ,  and through the others 
only once. 

The authors thank A. L. Danishevskii for his 
assistance in the computer simulations. 
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Abstract 

The best X-ray atomic scattering factors for copper 
have been examined carefully to see which are most 
appropriate for charge density studies. The most con- 
sistent values were then used to generate a deforma- 
tion charge density map, and it would appear that 
bonding in copper arises from electron charge build 
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up between nearest-neighbour (n.n.) atoms, next-n.n. 
atoms etc. This is in agreement with conclusions 
obtained from y-ray diffraction experiments and the 
best band-structure calculations, but in marked dis- 
agreement with the charge density obtained from 
earlier band-structure form factors. 

Introduction 

In most cases the differences between elemental X-ray 
atomic scattering factors and best free-atom values 
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